
08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

C++
• A better C

• A superset of C

• Created at Bell Labs in the 1980's and called C
with Classes

• Adds additional features to improve the language

• Adds functions and features to support Object
Oriented Programming (OOP)

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• Excessive use of global variables (variables
known throughout the entire program) may allow
bugs to creep into a program by allowing
unwanted side effects.

• The concept of compartmentalization is greatly
expanded by C++. Specifically, in C++, one part
of your program may tightly control which other
parts of your program are allowed access.

C v/s C++

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

C++

• The C++ standard library can be divided
into two halves:
– the standard function library

&
– the class library.
The standard function library is inherited from

the C language.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

C++

• The C++ class library provides object-
oriented routines that your programs may
use.

• It also defines the Standard Template
Library (STL), which offers off-the-shelf
solutions to a variety of programming
problems.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

C++

• Traditionally, C programs use the file
extension .C, and C++ programs use the
extension .CPP.

• A C++ compiler uses the file extension to
determine what type of program it is
compiling.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

C++

• In C++, there is no limit to the length of an
identifier, and at least the first 1,024 characters are
significant.

• In an identifier, upper- and lowercase are treated
as distinct. Hence, count, Count, and COUNT
are three separate identifiers.

• An identifier cannot be the same as a C++
keyword, and should not have the same name as
functions that are in the C++ library.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

C++
• In C++, you can define local variables

at any point in your program.
• In C++, you may define a global variable only

once.
• use of static is still supported, but it is not

recommended for new code. Instead, you should
use a namespace.

• In C, you cannot find the address of a register
variable using the & operator. But this restriction
does not apply to C++.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

C++ Data TypesC++ Data Types

structured

array struct union class

address

pointer reference

simple

integral enum

char short int long bool

floating

float double long double

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

C++ Simple Data TypesC++ Simple Data Types

simple types

integral floating

char short int long bool enum float double long double

unsigned

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

By definition,
The size of a C++ char value is always 1 byte

exactly one byte of memory space

Sizes of other data type values in C++ are machine-
dependent

‘A’

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Using one byte (= 8 bits)

How many different numbers can be
represented using 0’s and 1’s?

Each bit can hold either a 0 or a 1. So there are just two
choices for each bit, and there are 8 bits.

2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 28 = 256

0 1 1 0 0 0 1 1

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Using two bytes (= 16 bits)

216 = 65,536

So 65, 636 different numbers can be represented
If we wish to have only one number representing the integer

zero, and half of the remaining numbers positive, and half
negative, we can obtain the 65,536 numbers in the range -32,768 .
. . . 0 32,767

0 1 0 0 1 0 1 00 1 1 0 0 0 1 1

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Some Integral Types
Type Size in Bytes Minimum Value Maximum Value

char 1 -128 127

short 2 -32,768 32,767

int 2 -32,768 32,767

long 4 -2,147,483,648 2,147,483,647

NOTE: Values given for one machine; actual sizes are machine-dependent

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Data Type bool

• Domain contains only 2 values, true and false

• Allowable operation are the logical (!, &&, ||) and
relational operations

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Operator sizeof

sizeof A C++ unary operator that yields the size on your
machine, in bytes, of its single operand. The operand can be a
variable name, or it can be the name of a data type enclosed
in parentheses.

int age;
cout << “Size in bytes of variable age is “

<< sizeof age << end;
cout << “Size in bytes of type float is “

<< sizeof (float) << endl;

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

The only guarantees made by
C++ are . . .

1 = sizeof(char) <= sizeof(short) <= sizeof(int) <= sizeof(long)

1 <= sizeof (bool) <= sizeof (long)

sizeof (float) <= sizeof (double) <= sizeof (long double)

char is at least 8 bits

short is at least 16 bits

long is at least 32 bits

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Floating Point Types
Type Size in Bytes Minimum Maximum

Positive Value Positive Value

float 4 3.4E-38 3.4E+38

double 8 1.7E-308 1.7E+308

long double 10 3.4E-4932 1.1E+4932

NOTE: Values given for one machine; actual sizes are machine-dependent

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

More about Floating Point Types

• Floating point constants in C++ like 94.6 without a suffix
are of type double by default

• To obtain another floating point type constant a suffix
must be used

– The suffix F or f denotes float type, as in 94.6F

– The suffix L or l denotes long double, as in 94.6L

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Header Files
climits and cfloat

• Contain constants whose values are the maximum
and minimum for your machine

• Such constants are FLT_MAX, FLT_MIN,
LONG_MAX, LONG_MIN

#include <climits>
using namespace std;

.

.

.
cout << “Maximum long is “ << LONG_MAX

<< endl;
cout << “Minimum long is “ << LONG_MIN

<< endl;

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Combined Assignment Operators

int age;
cin >> age;

A statement to add 3 to age

age = age + 3;
OR

age += 3;

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

A statement to subtract 10 from weight

int weight;
cin >> weight;

weight = weight - 10;
OR

weight -= 10;

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

A statement to divide money by 5.0

float money;
cin >> money;

money = money / 5.0;
OR

money /= 5.0;

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

A statement to double profits

float profits;
cin >> profits;

profits = profits * 2.0;
OR

profits *= 2.0;

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

A statement to raise cost 15%

float cost;
cin >> cost;

cost = cost + cost * 0.15;
OR

cost = 1.15 * cost;
OR

cost *= 1.15;

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Which form to use?
• When the increment (or decrement) operator is

used in a “stand alone” statement to add one
(or subtract one) from a variable’s value, it can
be used in either prefix or postfix form

dogs--; --dogs;

USE EITHER

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

BUT...
• when the increment (or decrement)

operator is used in a statement with other
operators, the prefix and postfix forms
can yield different results

Let’s see how. . .

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

int alpha;
int num;

num = 13;

alpha = ++num * 3;

13

num

14

num alpha

alpha

4214
num

PREFIX FORM
“First increment, then use ”

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

num

num alpha

alpha

num

int alpha;
int num;

num = 13;

alpha = num++ * 3;

13

13 39

14

POSTFIX FORM
“Use, then increment”

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Type Cast Operator
The C++ cast operator, which comes in two forms, is used to

explicitly request a type conversion

int intVar;
float floatVar = 104.8;

intVar = int(floatVar); // Functional notation, OR
intVar = (int)floatVar; // Prefix notation uses ()

104.8 104

floatVar intVar

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

SYNTAX

Expression1 ? Expression2 : Expression3

MEANING
If Expression1 is true (nonzero), then the value of the entire

expression is Expression2. Otherwise, the value of the
entire expression is Expression 3.

For example . . .

Ternary (three-operand) Operator
? :

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Using Conditional Operator
float Smaller (float x, float y)
// Finds the smaller of two float values
// Precondition: x assigned && y assigned
// Postcondition:Function value == x, if x < y
// == y, otherwise
{

float min;

min = (x < y) ? x : y;
return min;

}

31

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

C++ Operator Precedence
(highest to lowest)

Operator Associativity
() Left to right

unary: ++ -- ! + - (cast) sizeof Right to left
* / % Left to right
+ - Left to right
< <= > >= Left to right
== != Left to right
&& Left to right
|| Left to right
? : Right to left
= += -= *= /= Right to left

32

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Converting char digit to int
• The successive digit characters ‘0’ through ‘9’ are represented in ASCII
by the successive integers 48 through 57 (the situation is similar in
EBCDIC)

• As a result, the following expression converts a char digit value to its
corresponding integer value

‘2’ ?
ch number

char ch;
int number;
. . .
number = int (ch - ‘0’)

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

typedef statement
• typedef creates an additional name for an already

existing data type
• Before bool type became part of ISO-ANSI C++, a

Boolean type was simulated this way

typedef int Boolean;
const Boolean true = 1;
const Boolean false = 0;

.

.

.
Boolean dataOK;

.

.

.

dataOK = true;

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Enumeration Types
• C++ allows creation of a new simple type by listing

(enumerating) all the ordered values in the domain
of the type

EXAMPLE

enum MonthType { JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC };

name of new type list of all possible values of this new type

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

enum Type Declaration
enum MonthType { JAN, FEB, MAR, APR, MAY, JUN,

JUL, AUG, SEP, OCT, NOV, DEC};

• The enum declaration creates a new programmer-defined
type and lists all the possible values of that type--any valid
C++ identifiers can be used as values

• The listed values are ordered as listed; that is,
JAN < FEB < MAR < APR , and so on

• You must still declare variables of this type

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Declaring enum Type Variables

enum MonthType { JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC };

MonthType thisMonth; // Declares 2 variables
MonthType lastMonth; // of type MonthType

lastMonth = OCT; // Assigns values
thisMonth = NOV; // to these variables

.

.

.
lastMonth = thisMonth;
thisMonth = DEC;

37

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Storage of enum Type Variables

enum MonthType { JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC};

stored as 0 stored as 1 stored as 2 stored as 3 etc.

stored as 11

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Use Type Cast to Increment enum Type Variables

enum MonthType { JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC};

MonthType thisMonth;
MonthType lastMonth;

lastMonth = OCT;
thisMonth = NOV;
lastMonth = thisMonth;

thisMonth = thisMonth++; // COMPILE ERROR !

thisMonth = MonthType(thisMonth + 1);
// Uses type cast

39

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

More about enum Type
Enumeration type can be used in a Switch statement for the

switch expression and the case labels

Stream I/O (using the insertion << and extraction >>
operators) is not defined for enumeration types; functions
can be written for this purpos

Comparison of enum type values is defined using the 6
relational operators (< , <= , > , >= , == , !=)

An enum type can be the return type of a value-returning
function in C++

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

MonthType thisMonth;

switch (thisMonth) // Using enum type switch expression
{

case JAN :
case FEB :
case MAR : cout << “Winter quarter”;

break;
case APR :
case MAY :
case JUN : cout << “Spring quarter”;

break;
case JUL :
case AUG :
case SEP : cout << “Summer quarter”;

break;
case OCT :
case NOV :
case DEC : cout << “Fall quarter”;

}
41

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Using enum type Control Variable with for Loop
enum MonthType { JAN, FEB, MAR, APR, MAY, JUN,

JUL, AUG, SEP, OCT, NOV, DEC };

void WriteOutName (/* in */ MonthType); // Prototype
.
.
.

MonthType month;

for (month = JAN; month <= DEC;
month = MonthType (month + 1))

// Requires use of type cast to increment
{

WriteOutName (month);
// Function call to perform output ...

} 42

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

void WriteOutName (/* in */ MonthType month)
// Prints out month name
// Precondition: month is assigned
// Postcondition: month name has been written out

{ switch (month)
{
case JAN : cout << “ January ”; break;

case FEB : cout << “ February ”; break;
case MAR : cout << “ March ”; break;
case APR : cout << “ April ”; break;
case MAY : cout << “ May ”; break;
case JUN : cout << “ June ”; break;
case JUL : cout << “ July ”; break;
case AUG : cout << “ August ”; break;
case SEP : cout << “ September ”; break;
case OCT : cout << “ October ”; break;
case NOV : cout << “ November ”; break;
case DEC : cout << “ December ”; break;

}
} 43

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

enum SchoolType {PRE_SCHOOL, ELEM_SCHOOL,
MIDDLE_SCHOOL, HIGH_SCHOOL, COLLEGE };
...

SchoolType GetSchoolData (void)

// Obtains information from keyboard to determine level
// Postcondition: Return value == personal school level
{

SchoolType schoolLevel;
int age;
int lastGrade;
cout << “Enter age : “; // Prompt for information
cin >> age;

Function with enum Type Return Value

44

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

if (age < 6)
schoolLevel = PRE_SCHOOL;

else
{

cout
<< “Enter last grade completed in school: “;

cin >> lastGrade;
if (lastGrade < 5)

schoolLevel = ELEM_SCHOOL;
else if (lastGrade < 8)

schoolLevel = MIDDLE_SCHOOL;
else if (lastGrade < 12)

schoolLevel = HIGH_SCHOOL;
else

schoolLevel = COLLEGE;
}
return schoolLevel; // Return enum type value

}
45

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Storage Class Specifiers

• There are four storage class specifiers
supported by C:
– extern
– static
– register
– auto

• C++ adds another storage-class specifier
called mutable.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

The Dot (.) and Arrow (−>)
Operators

• In C, the . (dot) and the −>(arrow) operators
access individual elements of structures
and unions.

• In C++, the dot and arrow operators are also
used to access the members of a class.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Nesting

• Standard C specifies that at least 15 levels of
nesting must be supported. In practice, most
compilers allow substantially more.

• More importantly, Standard C++ suggests that at
least 256 levels of nested ifs be allowed in a C++
program.

• Standard C specifies that a switch can have at
least 257 case statements. Standard C++
recommends that at least 16,384 case statements
be supported.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Declaring Variables within Selection and
Iteration Statements

• In C++ (but not C), it is possible to declare a
variable within the conditional expression of an if
or switch, within the conditional expression of a
while loop, or within the initialization portion of a
for loop.

• A variable declared in one of these places has its
scope limited to the block of code controlled by
that statement.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

A Sample C++ Program
#include <iostream> //In older C++ #include<iostream.h>
using namespace std;
int main()
{

int i;
cout << "This is output.\n"; // this is a single line comment
/* you can still use C style comments */
// input a number using >>
cout << "Enter a number: ";
cin >> i;
// now, a number using <<
cout << i << " squared is " << i*i << "\n";
return 0;

}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Program Explained…

• (<iostream> is to C++ what stdio.h is to
C.) Notice one other thing: there is no .h
extension to the name iostream. The reason
is that <iostream> is one of the new-style
headers defined by Standard C++. New-
style headers do not use the .h extension.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

The next line in the program is

using namespace std;

This tells the compiler to use the std namespace.
Namespaces are a recent addition to C++. A
namespace creates a declarative region in which
various program elements can be placed.
Namespaces help in the organization of large
programs. The using statement informs the compiler
that you want to use the std namespace. This is the
namespace in which the entire Standard C++ library
is declared. By using the std namespace you simplify
access to the standard library.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• Now examine the following line.

int main()

As a general rule, in C++ when a function
takes no parameters, its parameter list is
simply empty; the use of void is not
required.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• The next line contains two C++ features.

cout << "This is output.\n"; // this is a single line comment

• In C++, the << has an expanded role. It is still the left shift
operator, but when it is used as shown in this example, it is
also an output operator. Assume that cout refers to the
screen.) You can use cout and the << to output any of the
built-in data types, as well as strings
of characters.

• Note that you can still use printf() or any other of C's I/O
functions in a C++ program.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Comments

• C++ defines two types of comments.
1. /*…..*/ First, you may use a C-like comment,
which works the same in C++ as in C.

2. //
You can also define a single-line comment by
using; whatever follows such a comment is
ignored by the compiler until the end of
the line is reached.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• Next, the program prompts the user for a number.
The number is read from the keyboard with this
statement:

cin >> i;
• In C++, the >> operator still retains its right shift

meaning. However, when used as shown, it also is
C++'s input operator. This statement causes i to be
given a value read from the keyboard.

• The identifier cin refers to the standard input
device, which is usually the keyboard.

• In general, you can use cin >> to input a variable
of any of the basic data types plus strings.

• You are free to use any of the C-based input
functions, such as scanf(),

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• The program ends with this statement:
return 0;

• This causes zero to be returned to the
calling process (which is usually the
operating system). This works the same in
C++ as it does in C. Returning zero
indicates that the program terminated
normally.

• Abnormal program termination should be
signaled by returning a nonzero value.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Closer Look at the I/O Operators

• When used for I/O, the << and >> operators
are capable of handling any of C++'s built-
in data types. For example, this program
inputs a float, a double, and a string and
then outputs them:

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

#include <iostream>
using namespace std;
int main()
{

float f;
char str[80];
double d;
cout << "Enter two floating point numbers: ";
cin >> f >> d;
cout << "Enter a string: ";
cin >> str;
cout << f << " " << d << " " << str;
return 0;

}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• When you run this program, try entering
This is a test. when prompted for the string.

• When the program redisplays the
information you entered, only the word
"This“ will be displayed. The rest of the
string is not shown because the >> operator
stops reading input when the first white-
space character is encountered. Thus, "is a
test" is
never read by the program.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

C++

• /* Incorrect in C. OK in C++. */
int f()
{

int i;
i = 10;
int j; /* won't compile as a C program */
j = i*2;
return j;

}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Here is another example. This version of the program from
the preceding section declares each variable just before it is
needed.

#include <iostream>
using namespace std;
int main()
{

float f;
double d;
cout << "Enter two floating point numbers: ";
cin >> f >> d;
cout << "Enter a string: ";
char str[80]; // str declared here, just before 1st use
cin >> str;
cout << f << " " << d << " " << str;
return 0;

}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Debate

• Which declarations are better?

• Declare all variables at the start of a block
or

• At the point of first use

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Output Statements
SYNTAX

These examples yield the same output:

cout << “The answer is “ ;
cout << 3 * 4 ;

cout << “The answer is “ << 3 * 4 ;

cout << Expression << Expression . . . ;

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

No Default to int

• There has been a fairly recent change to C++ that
may affect older C++ code as well as C code being
ported to C++.

• The C language and the original specification for
C++ state that when no explicit type is specified in
a declaration, type int is assumed.

• However, the "default-to-int" rule was dropped
from C++ a couple of years ago, during
standardization.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• For example, in C and older C++ code the following
function is valid.

func(int i)
{
return i*i;
}

• In Standard C++, this function must have the return
type of int specified, as shown here.

int func(int i)
{
return i*i;
}

• As a practical matter, nearly all C++ compilers still
support the "default-to-int" rule for compatibility with
older code. However, you should not use this feature for
new code because it is no longer allowed.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

The bool Data Type

• C++ defines a built-in Boolean type called
bool. At the time of this writing, Standard C
does not. Objects of type bool can store
only the values true or false, which are
keywords defined by C++.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Old-Style vs. Modern C++

There are really two versions of C++.
• The first is the traditional version that is based upon Bjarne

Stroustrup's original designs. This is the version of C++
that has been used by programmers for the past decade.

• The second is the new, Standard C++ that was created by
Stroustrup and the ANSI/ISO standardization committee.

• The key differences between old-style and modern code
involve two features:
– new-style headers and
– the namespace statement.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• The first version shown here reflects the way
C++ programs were written using old-style
coding.

/*
An old-style C++ program.
*/
#include <iostream.h>
int main()
{
return 0;
}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• Here is the second version of the skeleton, which uses
the modern style.

/*
A modern-style C++ program that uses
the new-style headers and a namespace.
*/
#include <iostream>
using namespace std;
int main()
{
return 0;
}

• This version uses the new-style header and specifies a
namespace.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• The new-style headers do not specify filenames. Instead, they
simply specify standard identifiers that may be mapped to files
by the compiler, although they need not be.

• Since the new-style headers are not filenames, they do not have
a .h extension. They consist solely of the header name
contained between angle brackets.

• For example, here are some of the new-style headers supported
by Standard C++.
<iostream> <fstream> <vector> <string>

• The new-style headers are included using the #include
statement. The only difference is that the new-style headers do
not necessarily represent filenames.

• Because C++ includes the entire C function library, it still
supports the standard C-style header files associated with that
library.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Working with an Old Compiler

• Just replace
#include <iostream>
using namespace std;
with
#include <iostream.h>

• This change transforms a modern program into
an old-style one. Since the old-style header reads
all of its contents into the global namespace, there
is no need for a namespace statement.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

C++ Data Type String

• a string is a sequence of characters enclosed in
double quotes

• string sample values
“Hello” “Year 2000” “1234”

• the empty string (null string) contains no
characters and is written as “”

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Strings

• Besides using an array of characters, a special library
called the Standard Template Library provides an
alternative. You can declare a string using the string
keyword.
•To use a string in your program, first include the
string library using the using namespace keywords
followed by std;.
•In your program, declare a variable starting with the
word string followed by a valid name for the variable.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Here are examples:

string Continent;
string Company;

When requesting its value from the
user, by default, the string identifier
is used to get only a one-word
variable.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Here is an example program that requests a first and last
names:
#include <iostream>

#include <string>

using namespace std;

int main()

{ string FirstName, LastName;

cout << "Enter first name: "; cin >> FirstName;

cout << "Enter last name: ";

cin >> LastName; cout << "\n\nFull Name: " << FirstName << " " <<
LastName << "\n\n";

return 0;

}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

You can initialize a string variable of
any length. One technique is to use the
assignment operator and include the
string in double-quotes. Here is an
example:
string UN = "United Nations";

cout << "The " << UN << " is an organization
headed by a Secretary General";

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Here is an example program that requests strings of any length from the user:
#include <iostream>
#include <string>
using namespace std;
int main()
{
string MusicAlbum;
string TrackTitle;
cout << "Welcome to Radio Request where the listeners select their
songs:\n";
cout << "Type the album name: ";
getline(cin, MusicAlbum);
cout << "Type the song title: ";
getline(cin, TrackTitle);
cout << "\nNow for your pleasure, we will play: " << TrackTitle <<
"\nfrom the " << MusicAlbum << " wonderful album.\n\n";
return 0;
}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

•Object-oriented programming took the best ideas of
structured programming and combined them with
several new concepts.

•A program can be organized in one of two ways:
around its code (what is happening) or around its
data (who is being affected).

•For example, a program written in a structured
language such as C is defined by its functions, any of
which may operate on any type of data used by the
program.

Object Oriented Programming

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• Object-oriented programs are organized around
data, with the key principle being "data controlling
access to code."

• In an object-oriented language, you define the
data and the routines that are permitted to act on
that data.

• A data type defines precisely what sort of
operations can be applied to that data.

• To support the principles of object-oriented
programming, all OOP languages have three
traits in common: encapsulation, polymorphism,
and inheritance.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Encapsulation

• Encapsulation is the mechanism that binds
together code and the data it manipulates,and
keeps both safe from outside interference and
misuse.

• In an object-oriented language, code and data
may be combined in such a way that a self-
contained "black box" is created.

• When code and data are linked together in this
fashion, an object is created.

• In other words, an object is the device that
supports encapsulation.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Information Hiding: a Design
Principle

• HIDE the data from external access (and
modification!) in order to protect the integrity of
the state of the object

HW

OS

Private Functions

Public Functions
(Interface) like
t1.display()

Data

Object

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Encapsulation vs. Information
Hiding

• Encapsulation is a language construct
• Information Hiding is a design principle
• Related but one is required the other is

recommended

Data

Object

Operations

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

An object is like a
black box.

The internal details
are hidden.

• Identifying objects and
assigning responsibilities to
these objects.

• Objects communicate to other
objects by sending messages.

• Messages are received by the
methods of an object

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• Within an object, code, data, or both may be
private to that object or public.

• Private code or data may not be accessed by a
piece of the program that exists outside the
object.

• When code or data is public, other parts of your
program may access it even though it is defined
within an object.

• Typically, the public parts of an object are used
to provide a controlled interface to the private
elements of the object.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Polymorphism
• Object-oriented programming languages support

polymorphism, which is characterized by the
phrase "one interface, multiple methods."

• A real-world example of polymorphism is a
thermostat. No matter what type of furnace your
house has (gas, oil, electric, etc.), the thermostat
works the same way. For example, if you want a
70-degree temperature, you set the thermostat
to 70 degrees.

• It doesn't matter what type of furnace actually
provides the heat.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Example…
• This same principle can also apply to

programming. For example, you might
have a program that defines three
different types of stacks. One stack is
used for integer values, one for
character values, and one for floating-
point values. Because of polymorphism,
you can define one set of names,
push() and pop() , that can be used for
all three stacks.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• Polymorphism helps reduce complexity
by allowing the same interface to be used
to access a general class of actions.

• It is the compiler's job to select the
specific action (i.e., method) as it applies
to each situation. You, the programmer,
don't need to do this selection manually.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Inheritance
• Inheritance is the process by which one object

can acquire the properties of another object.
This is important because it supports the
concept of classification. If you think about it,
most knowledge is made manageable by
hierarchical classifications.

• For example, a Red Delicious apple is part of
the classification apple, which in turn is part of
the fruit class, which is under the larger class
food.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• Without the use of classifications, each
object would have to define explicitly all of its
characteristics.

• However, through the use of classifications,
an object need only define those qualities
that make it unique within its class.

• It is the inheritance mechanism that makes it
possible for one object to be a specific
instance of a more general case.

Inheritance Continued….

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Introducing C++ Classes

• In C++, to create an object, you first must
define its general form by using the
keyword class.

• A class is similar syntactically to a
structure.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Object Creation………………

• Once you have defined a class, you can
create an object of that type by using the
class name. In essence, the class name
becomes a new data type specifier.

• For example, this creates an object called
mystack of type stack:

• stack mystack;

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• The general form of a simple class
declaration is:

class class-name {
private data and functions
public:
public data and functions
} object name list;

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• When it comes time to actually code a
function that is the member of a class, you
must tell the compiler which class the
function belongs to by qualifying its name
with the name of the class of which it is a
member.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

#define SIZE 100
// This creates the class stack.
class stack {

private:
int stck[SIZE];
int tos;
public:
void init();
void push(int i);
int pop();

};

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• For example, here is one way to code the
push() function:
void stack::push(int i)
{

if(tos==SIZE) {
cout << "Stack is full.\n";
return;

}
stck[tos] = i;
tos++;
}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Calling member functions and
data…

• When you refer to a member of a class from
a piece of code that is not part of the class,
use the object's name, followed by the dot
operator, followed by the name of the
member.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• For example, this calls init() for object stack1.
stack stack1, stack2;
stack1.init();

• This fragment creates two objects, stack1 and
stack2, and initializes stack1.

• Understand that stack1 and stack2 are two
separate objects.

• This means, for example, that initializing
stack1 does not cause stack2 to be initialized
as well.

• The only relationship stack1 has with stack2
is that they are objects of the same type.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• Within a class, one member function can
call another member function or refer to a
data member directly, without using the dot
operator.

• It is only when a member is referred to by
code that does not belong to the class that
the object name and the dot operator must
be used.

• Example: Stack

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• The private members of an object are
accessible only by functions that are
members of that object. For example, a
statement like
stack1.tos = 0; // Error, tos is private.

could not be in the main() function of the
previous program because tos is private.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Classes

• Classes are created using the keyword class.
• A class declaration defines a new type that

links code and data. This new type is then
used to declare objects of that class.

• A class is a logical abstraction, but an object
has physical existence.

• An object is an instance of a class.
• A class declaration is similar syntactically

to a structure.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Class Declaration
• class class-name {

private data and functions
access-specifier:
data and functions
access-specifier:
data and functions
// ...
access-specifier:
data and functions

} object-list;

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• The object-list is optional.
• access-specifier is one of these three C++

keywords:

–public
–private
–Protected

Variables that are elements of a class are called member
variables or data members.

No member can be declared as auto, extern, or register.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• By default, functions and data declared within a
class are private to that class and may be accessed
only by other members of the class.

• The public access specifier allows functions or
data to be accessible to other parts of your
program.

• The protected access specifier is needed only
when inheritance is involved

• Once an access specifier has been used, it remains
in effect until either another access specifier is
encountered or the end of the
class declaration is reached. Example….

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• class employee {
char name[80]; // private by default
public:
void putname(char *n); // these are public
void getname(char *n);
private:
double wage; // now, private again
public:
void putwage(double w); // back to public
double getwage();
};

• Note: Actually, most programmers find it easier to have
only one private, protected, and public section within each
class.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• In general, you should make all data
members of a class private to that class.
This is part of the way that encapsulation is
achieved.

• However, there may be situations in which
you will need to make one or more
variables public.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Differences

1. C does not provide classes;
C++ provides both structs and classes

2. Members of a struct by default are public (can be
accessed outside the struct by using the dot operator.)
In C++ they can be declared to be private (cannot be
accessed outside the struct.)

3. Members of a class by default are private (cannot be
accessed outside the class) but can be explicitly
declared to be public.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Structure and Classes

• The only difference between a class and a
struct is that by default all members are
public in a struct and private in a class. In
all other respects, structures and classes are
equivalent.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Unions and Classes Are Related
• Like a structure, a union may also be used to

define a class.
• In C++, unions may contain both member

functions and variables.
• They may also include constructor and destructor

functions.
• A union in C++ retains all of its C-like features,

the most important being that all data elements
share the same location in memory.

• Like the structure, union members are public by
default and are fully compatible with C.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Anonymous Unions

• There is a special type of union in C++ called an
anonymous union.

• An anonymous union does not include a type
name, and no objects of the union can be declared.

• Instead, an anonymous union tells the compiler
that its member variables are to share the same
location.

• However, the variables themselves are referred to
directly, without the normal dot operator syntax.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

For example,
#include <iostream>
#include <cstring>
using namespace std;
int main()

{
// define anonymous union

union {
long l;
double d;
char s[4];
} ;

// now, reference union elements directly
l = 100000;
cout << l << " ";
d = 123.2342;
cout << d << " ";
strcpy(s, "hi");
cout << s;
return 0;

}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Function Overloading

• In C++, two or more functions can share the
same name as long as their parameter
declarations are different.

• In this situation, the functions that share the
same name are said to be overloaded, and
the process is referred to as function
overloading

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• To see why function overloading is important, first
consider three functions defined by the C subset:
abs(), labs(), and fabs(). The abs() function returns
the absolute value of an integer, labs() returns the
absolute value of a long, and fabs() returns the
absolute value of a double.
• Although these functions perform almost identical
actions, in C three slightly different names must be
used to represent these essentially similar
tasks.
•Example: Function Overloading

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Constructors
• A constructor function is a special function

that is a member of a class and has the same
name as that of class.

• It is very common for some part of an object
to require initialization before it can be used.

• This automatic initialization is performed
through the use of a constructor function.

• An object's constructor is automatically
called when the object is created.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• // This creates the class stack.
• class stack {

int stck[SIZE];
int tos;
public:
stack(); // constructor
void push(int i);
int pop();
}; // stack's constructor function

stack::stack()
{

tos = 0;
cout << "Stack Initialized\n";

}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Destructor
• The complement of the constructor is the

destructor.
• When an object is destroyed, its destructor (if it

has one) is automatically called.
• There are many reasons why a destructor function

may be needed. For example, an object may need
to deallocate memory that it had previously
allocated or it may need to close a file that it had
opened. In C++, it is the destructor function that
handles deactivation events.

• The destructor has the same name as the
constructor, but it is preceded by a ~.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

// This creates the class stack.
class stack {

int stck[SIZE];
int tos;
public:
stack(); // constructor
~stack(); // destructor
void push(int i);
int pop();

};

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

// stack's constructor function
stack::stack()
{

tos = 0;
cout << "Stack Initialized\n";

}
// stack's destructor function
stack::~stack()
{

cout << "Stack Destroyed\n";
}
Full Example of constructor destructor:

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Friend Functions

• It is possible to grant a nonmember function
access to the private members of a class by using a
friend.

• A friend function has access to all private and
protected members of the class for which it is a
friend.

• To declare a friend function, include its prototype
within the class, preceding it with the keyword
friend.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

#include <iostream>
using namespace std;
class myclass {

int a, b;
public:
friend int sum(myclass x);
void set_ab(int i, int j);
};

void myclass::set_ab(int i, int j)
{
a = i; b = j;
}

// Note: sum() is not a member function of any class.
int sum(myclass x)
{
/* Because sum() is a friend of myclass, it can
irectly access a and b. */
return x.a + x.b;

}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

int main()
{

myclass n;
n.set_ab(3, 4);
cout << sum(n);
return 0;

}

• Full Example Friend Function

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Friend Classes

• It is possible for one class to be a friend of
another class.

• When this is the case, the friend class and
all of its member functions have access to
the private members defined within the
other class.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

// Using a friend class.
#include <iostream>
using namespace std;
class TwoValues {

int a;
int b;
public:
TwoValues(int i, int j) { a = i; b = j; }
friend class Min;
};

class Min {
public:
int min(TwoValues x);
};

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

int Min::min(TwoValues x)
{
return x.a < x.b ? x.a : x.b;
}

int main()
{

TwoValues ob(10, 20);
Min m;
cout << m.min(ob);
return 0;

}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Parameterized Constructors

• It is possible to pass arguments to constructor
functions.

• Typically, these arguments help initialize an
object when it is created.

• To create a parameterized constructor, simply
add parameters to it the way you would to any
other function.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Parameterized Constructor Example
class myclass {

int a, b;
public:
myclass(int i, int j) {a=i; b=j;}
void show() {cout << a << " " << b;}
};

int main()
{

myclass ob(3, 5);
ob.show();
return 0;

}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• Specifically, this statement
myclass ob(3, 4);

causes an object called ob to be created and
passes the arguments 3 and 4 to the i and j
parameters of myclass().

• You may also pass arguments using this
type of declaration statement:

myclass ob = myclass(3, 4);

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Constructors with One Parameter: A
Special Case

#include <iostream>
using namespace std;
class X {

int a;
public:
X(int j) { a = j; }
int geta() { return a; }

};
int main()
{

X ob = 99; // passes 99 to j
cout << ob.geta(); // outputs 99
return 0;

}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

When Constructors and Destructors Are
Executed

• An object's constructor is called when the object comes
into existence, and an object's destructor is called when the
object is destroyed.

• A local object's constructor function is executed when the
object's declaration statement is encountered.

• The destructor functions for local objects are executed in
the reverse order of the constructor functions.

• Global objects have their constructor functions execute
before main() begins execution.

• Example:

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Inline Functions

• In C++, you can create short functions that
are not actually called; rather, their code is
expanded in line at the point of each
invocation.

• This process is similar to using a function-
like macro.

• To cause a function to be expanded in line
rather than called, precede its definition
with the inline keyword.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• //Inline Function
#include <iostream>
using namespace std;
inline int max(int a, int b)

{
return a>b ? a : b;
}

int main()
{

cout << max(10, 20);
cout << " " << max(99, 88);
return 0;

}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Inline function Cont……….

• Inline functions may be class member
functions.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Defining Inline Functions Within a Class

• #include <iostream>
using namespace std;
class myclass {

int a, b;
public:
// automatic inline
void init(int i, int j) { a=i; b=j; }
void show() { cout << a << " " << b << "\n"; }
};

int main()
{

myclass x;
x.init(10, 20);
x.show();
return 0;

}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

The Scope Resolution Operator

int i; // global i
void f()
{

int i; // local i
i = 10; // uses local i
.
.
.

}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• As the comment suggests, the assignment i = 10 refers to
the local i. But what if function f() needs to access the
global version of i? It may do so by preceding the I with
the :: operator, as shown here.

int i; // global i
void f()
{

int i; // local i
::i = 10; // now refers to global i
.
.
.
}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Static Data Members
• When you precede a member variable's

declaration with static, you are telling the
compiler that only one copy of that variable
will exist and that all objects of the class will
share that variable.

• No matter how many objects of a class are
created, only one copy of a static data member
exists.

• All static variables are initialized to zero
before the first object is created.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• When you declare a static data member
within a class, you are not defining it. (That
is, you are not allocating storage for it.)

• Instead, you must provide a global
definition for it elsewhere, outside the class.

• This is done by redeclaring the static
variable using the scope resolution operator
to identify the class to which it belongs.

• Example:

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Static Variable Cont……

• A static member variable exists before any
object of its class is created. For example,
in the following short program, a is both
public and static. Thus it may
be directly accessed in main(). Further,
since a exists before an object of shared is
created, a can be given a value at any time.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

#include <iostream>
using namespace std;
class shared {

public:
static int a;
} ;

int shared::a; // define a
int main()
{

// initialize a before creating any objects
shared::a = 99;
cout << "This is initial value of a: " << shared::a;
cout << "\n";
shared x;
cout << "This is x.a: " << x.a;
return 0;

}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Static Variable Uses:

• One use of a static member variable is to provide
access control to some shared resource used by all
objects of a class. Program:

• Another interesting use of a static member
variable is to keep track of the number of objects
of a particular class type that are in existence.
Program:

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Static Member Functions
• Member functions may also be declared as static.

There are several restrictions placed on static
member functions.

• They may only directly refer to other static
members of the class.

• A static member function does not have a this
pointer.

• There cannot be a static and a non-static version
of the same function.

• A static member function may not be virtual.
• Finally, they cannot be declared as const or

volatile.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• Static function may be called either by
itself, independent of any object, by using
the class name and the scope resolution
operator, or in connection with an object.

• Actually, static member functions have
limited applications, but one good use for
them is to "preinitialize" private static data
before any object is actually created.

• Example:

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Nested Classes

• It is possible to define one class within
another. Doing so creates a nested class.

• Since a class declaration does, in fact, define
a scope, a nested class is valid only within
the scope of the enclosing class.

• Nested classes are seldom used.
• Because of C++'s flexible and powerful

inheritance mechanism, the need for nested
classes is virtually nonexistent.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Local Classes(within a function)

• When a class is declared within a function, it is
known only to that function and unknown outside.

• All member functions must be defined within the
class declaration.

• The local class may not use or access local variables
of the function in which it is declared (except that a
local class has access to static local variables
declared within the function or those declared as
extern).

• It may access type names and enumerators defined
by the enclosing function.

• No static variables may be declared inside a local
class.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Passing Objects to Functions

• Objects may be passed to functions in just the
same way that any other type of variable can.

• Objects are passed to functions through the
use of the standard call-by-value mechanism.

• This means that a copy of an object is made
when it is passed to a function. ie. another
object is created.

• This raises the question of whether the object's
constructor function is executed when the
copy is made and whether the destructor
function is executed when the copy is
destroyed. Example:

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Returning Objects
• A function may return an object to the caller.
• When an object is returned by a function, a

temporary object is automatically created that
holds the return value.

• It is this object that is actually returned by the
function.

• After the value has been returned, this object is
destroyed.

• The destruction of this temporary object may
cause unexpected side effects in some situations.

• Example:

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

// Returning objects from a function.
#include <iostream>
using namespace std;
class myclass {
int i;
public:
void set_i(int n) { i=n; }
int get_i() { return i; }
};
myclass f(); // return object of type myclass

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

int main()
{
myclass o;
o = f();
cout << o.get_i() << "\n";
return 0;
}
myclass f()
{
myclass x;
x.set_i(1);
return x;
}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Object Assignment

• Assuming that both objects are of the same
type, you can assign one object to another.

• This causes the data of the object on the
right side to be copied into the data of the
object on the left.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

// Assigning objects.
#include <iostream>
using namespace std;
class myclass {
int i;
public:
void set_i(int n) { i=n; }
int get_i() { return i; }
};

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

int main()
{
myclass ob1, ob2;
ob1.set_i(99);
ob2 = ob1; // assign data from ob1 to ob2
cout << "This is ob2's i: " << ob2.get_i();
return 0;
}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Arrays of Objects
• Object array is exactly the same as it is for

any other type of array.
#include <iostream>
using namespace std;
class cl {
int i;
public:
void set_i(int j) { i=j; }
int get_i() { return i; }
};

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

int main()
{
cl ob[3];
int i;
for(i=0; i<3; i++) ob[i].set_i(i+1);
for(i=0; i<3; i++)
cout << ob[i].get_i() << "\n";
return 0;
}
This program displays the numbers 1, 2, and 3

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• If a class defines a parameterized constructor, you
may initialize each object in an array by specifying an
initialization list, just like you do for other types of
arrays.

#include <iostream>
using namespace std;
class cl {
int i;
public:
cl(int j) { i=j; } // constructor
int get_i() { return i; }
};

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

int main()
{
cl ob[3] = {1, 2, 3}; // initializers
int i;
for(i=0; i<3; i++)
cout << ob[i].get_i() << "\n";
return 0;
}
As before, this program displays the numbers

1, 2, and 3 on the screen.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• If an object's constructor requires two or
more arguments, you will have to use the
longer initialization form.

int main()
{
cl ob[3] = {
cl(1, 2), // initialize
cl(3, 4),
cl(5, 6)
};

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Pointers to Objects

• Just as you can have pointers to other types of
variables, you can have pointers to objects.

• When accessing members of a class given a
pointer to an object, use the arrow (–>)
operator instead of the dot operator.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

#include <iostream>
using namespace std;
class cl {
int i;
public:
cl(int j) { i=j; }
int get_i() { return i; }
};
int main()
{
cl ob(88), *p;
p = &ob; // get address of ob
cout << p->get_i(); // use -> to call get_i()
return 0;
}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Pointer Arithmetic

• All pointer arithmetic is relative to the base
type of the pointer. (That is, it is relative to
the type of data that the pointer is declared
as pointing to.) The same is true of pointers
to objects.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

#include <iostream>
using namespace std;
class cl {
int i;
public:
cl() { i=0; }
cl(int j) { i=j; }
int get_i() { return i; }
};

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

int main()
{
cl ob[3] = {1, 2, 3};
cl *p;
int i;
p = ob; // get start of array
for(i=0; i<3; i++) {
cout << p->get_i() << "\n";
p++; // point to next object
}
return 0;
}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Type Checking C++ Pointers

•There is one important thing to understand
about pointers in C++: You may assign one
pointer to another only if the two pointer types
are compatible.
•For example, given:
int *pi;
float *pf;
in C++, the following assignment is illegal:
pi = pf; // error -- type mismatch

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

The this Pointer

• When a member function is called, it is
automatically passed an implicit argument
that is a pointer to the invoking object (that
is, the object on which the function is
called).

• This pointer is called this.
• The this pointer is automatically passed to

all member functions.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

About this pointer

• Friend functions are not members of a class
and, therefore, are not passed a this pointer.

• Second, static member functions do not
have a this pointer.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Pointers to Derived Types

• Will be Covered Later after inheritance.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Pointers to Class Members

• C++ allows you to generate a special type of
pointer that "points" generically to a member
of a class, not to a specific instance of that
member in an object.

• This sort of pointer is called a pointer to a
class member or a pointer-to-member, for
short.

• A pointer to a member is not the same as a
normal C++ pointer.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Pointers to Class Members Cont…..
• Instead, a pointer to a member provides

only an offset into an object of the
member's class at which that member can be
found.

• Since member pointers are not true pointers,
the . and -> cannot be applied to them.

• To access a member of a class given a
pointer to it, you must use the special
pointer-to-member operators .* and –>*.

• Example:

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Contt….

• If you are using a pointer to the object, you
need to use the –>* operator.

• Example:

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

References

• By default, C++ uses call-by-value, but it
provides two ways to achieve call-by-reference
parameter passing.

• First, you can explicitly pass a pointer to the
argument. Second, you can use a reference
parameter.

• To create a reference parameter, precede the
parameter's name with an &. Example:

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Passing by value
void Math::square(int i)

{

i = i*i;

}

int main()

{

int i = 5;

Math::square(i);

cout << i << endl;

}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Passing by reference
void Math::square(int& i)

{

i = i*i;

}

int main()

{

int i = 5;

Math::square(i);

cout << i << endl;

}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

What is a reference?
• An alias – another name for an object.

int x = 5;

int &y = x; // y is a

// reference to x

y = 10;

• What happened to x?
• What happened to y?

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

What is a reference?
• An alias – another name for an object.

int x = 5;

int &y = x; // y is a

// reference to x

y = 10;

• What happened to x?
• What happened to y? – y is x.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Why are they useful?
• Some people find it easier to deal with

references rather then pointers, but in the end
there is really only a syntactic difference
(neither pass by value)

• Unless you know what you are doing do not
pass objects by value, either use a pointer or a
reference

• Can be used to return more than one value
(pass multiple parameters by reference)

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

How are references
different from Pointers?

Reference Pointer

int &a; int *a;

int a = 10;

int b = 20;

int &c = a;

c = b;

int a = 10;

int b = 20;

int *c = &a;

c = &b;

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Returning References
#include <iostream>
using namespace std;
char &replace(int i); // return a reference
char s[80] = "Hello There";
int main()
{
replace(5) = 'X'; // assign X to space after Hello
cout << s;
return 0;
}
char &replace(int i)
{
return s[i];
}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

• This program replaces the space between Hello
and There with an X. That is, the program
displays HelloXthere. Take a look at how this is
accomplished. First, replace() is declared as
returning a reference to a character. As replace()
is coded, it returns a reference to the element of s
that is specified by its argument i. The reference
returned by replace() is then used in main() to
assign to that element the character X.One thing to
beware of when returning references is that the
object being referred to does not go out of scope
after the function terminates.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Independent References
• You candeclare a reference that is simply a

variable. This type of reference is called an
independent reference.

• All independent references must be
initialized when they are created.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

#include <iostream>
using namespace std;
int main()
{
int a;
int &ref = a; // independent reference
a = 10;
cout << a << " " << ref << "\n";
ref = 100;
cout << a << " " << ref << "\n";
int b = 19;
ref = b; // this puts b's value into a
cout << a << " " << ref << "\n";
ref--; // this decrements a
// it does not affect what ref refers to
cout << a << " " << ref << "\n";
return 0;
}

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Output

• The program displays this output:
10 10
100 100
19 19
18 18

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

References to Derived Types

• Will be Covered Later after inheritance.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Restrictions to References
• You cannot reference another reference.
• Put differently, you cannot obtain the address of a

reference.
• You cannot create arrays of references.
• You cannot create a pointer to a reference.
• You cannot reference a bit-field.
• A reference variable must be initialized when it is

declared unless it is a member of a class, a
function parameter, or a return value.

• Null references are prohibited.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Pointers
• In C, The code fragment shown here allocates 1,000 bytes of

contiguous memory:
char *p;
p = malloc(1000); /* get 1000 bytes */

• After the assignment, p points to the start of 1,000 bytes of free
memory.

• In C++, an explicit type cast is needed when a void * pointer is
assigned to another type of pointer. Thus, in C++, the preceding
assignment must be written like this:

p = (char *) malloc(1000);
• As a general rule, in C++ you must use a type cast when assigning (or

otherwise converting) one type of pointer to another.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

C++'s Dynamic Allocation
Operators

• C++ provides two dynamic allocation operators:
new and delete.

• These operators are used to allocate and free
memory at run time.

• C++ also supports dynamic memory allocation
functions, called malloc() and free(). These are
included for the sake of compatibility with C.

• However, for C++ code, you should use the new
and delete operators because they have several
advantages.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

New and Delete
• The new operator allocates memory and returns a

pointer to the start of it.
• The delete operator frees memory previously allocated

using new.
• The general forms of new and delete are shown here:

p_var = new type;
delete p_var;

• Here, p_var is a pointer variable that receives a pointer
to memory that is large enough to hold an item of type
type.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Allocating memory using new
Point *p = new Point(5, 5);

• new can be thought of a function with slightly
strange syntax

• new allocates space to hold the object.
• new calls the object’s constructor.
• new returns a pointer to that object.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Deallocating memory using delete
// allocate memory

Point *p = new Point(5, 5);

...

// free the memory

delete p;

For every call to new, there must be
exactly one call to delete.

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Using new with arrays

int x = 10;

int* nums1 = new int[10]; // ok

int* nums2 = new int[x]; // ok

• Initializes an array of 10 integers on the heap.
• C++ equivalent of
int* nums = (int*)malloc(x *
sizeof(int));

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Using new with multidimensional arrays

int x = 3, y = 4;

int* nums3 = new int[x][4][5];// ok

int* nums4 = new int[x][y][5];//
BAD!

• Initializes a multidimensional array
• Only the first dimension can be a variable. The

rest must be constants.
• Use single dimension arrays to fake

multidimensional ones

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Using delete on arrays
// allocate memory
int* nums1 = new int[10];
int* nums3 = new int[x][4][5];

...
// free the memory
delete[] nums1;
delete[] nums3;

• Have to use delete[].

08/02/2007 School of Computer Science sdandel.scs@dauniv.ac.in

Limitations…

• Since the heap is finite, it can become
exhausted.

• If there is insufficient available memory to
fill an allocation request, then new will fail
and a bad_alloc exception will be
generated.

